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Abstract 

In Japan, regional- hourly- electricity demand data per each sector (resi-

dential, commercial, transport, etc) is not publicly available; hence esti-

mating it by bottom up approach is really important not only for electricity 

production and distribution companies, but also urban planners. One of the 

conventional methods to implement this is using the intensity method. 

However, the problem of this approach is in that intensity value may 

change drastically due to the wide diffusion of new technologies such as 

electric vehicles or photovoltaics. Hence the present paper proposes a sim-

ple Bayesian updating method of the intensity by assimilating the infor-

mation of smart meter data. Also, forecasting of the intensity is performed 

using several recently proposed statistical methods, and its performances 

are empirically compared. The results support the use of seasonal-ARIMA 

model, multivariate dynamic linear model, and tbats model proposed by 

De Livera et al. (2011). 

1. Introduction 

In Japan, we experienced rolling blackouts due to power shortages caused 

by the Great East Japan Earthquake (GEJE) in the year 2011. The power 

supply of Tokyo Electric Power Company (TEPCO) was reduced by 

21GW, causing outages for 4.4 million families in eastern Japan (Okada et 
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al. 2011). From March 14 to 29, TEPCO implemented rolling blackouts in 

most areas of Tokyo. 

This bitter event has taught us the importance of distributed generations 

for diversification of risks. After the GEJE, discussions towards “resilient” 

city have widely occurred in Japan, accordingly the Japanese government 

has changed its energy policy direction toward distributed generations. As 

a part of such efforts, the government has issued the “Act on Purchase of 

Renewable Energy Sourced Electricity by Electric Utilities (Act)”, which 

is a full-blown feed-in tariff (FiT) regime for renewable energy, became 

effective on 1 July 2012. It is projected that the scheme will contribute to 

the increase of the share of renewable energy-based electricity in Japan. 

But of course, it is uncertain the success or sustainability of our FiT re-

gime. Huenteler et al. (2012) evaluated the Japanese schema from German 

experience, and pointed out that the schema’s “political legitimacy” is im-

portant. They noted that in Germany, the legitimacy of support for solar 

photovoltaic panels (PVs) is eroding, resulting in recent high-level calls to 

end the FiT and replace it with other, less generous policies. Hence dis-

cussing and simulating the possibility of a wide range of other schemas 

with looking ahead the FiT may be very important. Yamagata and Seya 

(2012) proposed a concept of disaster resilient electricity sharing system 

(DRESS) as a complement or an alternative to FiT. In this system, electric-

ity surplus, i.e., demand minus PV-supply (generated from widely intro-

duced PVs), is stored to the “cars not in use” in a local region. In the cen-

tral part of the Tokyo metropolitan area, many cars, which are used only 

for weekends, are kept parking at the house during the weekdays. Hence, if 

we replace some of those by electric vehicles (EVs), they can be used as 

battery storages by vehicle to grid (V2G). In such a calculation, estimating 

regional- hourly electricity as accurate as possible is crucial. 

One of the conventional methods for electricity demand estimation is 

using the intensity method, in which regional electricity demand is esti-

mated by multiplying electricity intensity (demand per floor) by floor 

space in each zone. In Japan, because regional- hourly- electricity demand 

per each sector (residential, commercial, transport, etc) is not publicly 

available, studies have estimated it using the electric bill from “Family In-

come and Expenditure Survey” or “National Survey of Family Income and 

Expenditure” of Ministry of Internal Affairs and Communications. How-

ever, these data is usually available only monthly or yearly, and to the best 

of our knowledge, only the Japan Institute of Energy (2008) provides hour-

ly electricity intensity (kWh/m2/h) for each of dwelling, office, hospital, 

hotel, store, and sport facility. But the limitation of this intensity is in that 

intensity’s regional differences are not considered. Cleary, intensity in 
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Hokkaido may different from that in Okinawa. Also, intensity value may 

change drastically due to the future wide diffusion of EVs or PVs.  

Hence the present paper first proposes a simple Bayesian updating 

method of the intensity by assimilating the information of measurement 

data. Owing to the development of smart electricity meter technologies 

(e.g., Matsui et al. 2012), now it is not so difficult to measure electricity in 

a dwelling or an office. Next, forecasting of the intensity is performed us-

ing several recently proposed statistical methods, and its performance is 

compared in detail. 

2. Literature review on electricity demand modeling 

Thus far numerous methods for estimating electricity demand have been 

proposed for different spatial scales (national, regional, etc.) and time 

scales (hourly, monthly, yearly, etc.). These methods are summarized in 

excellent review articles (e.g., Abu-El-Maged and Shinha 1982; Moghram 

and Rahman 1989; Alfares and Nazeerudin 2002; Kyriakides and 

Polycarpou 2007; Foley et al. 2010; Almeshaiei and Soltan 2011; 

Grandjean et al. 2012). Swan and Ugursal (2009) categorized electricity 

demand (load forecasting) models into top-down and bottom-up approach-

es. According to Grandjean et al. (2012), the latter, which is our focus, calcu-

lates energy consumption for a dwelling or a group of dwellings and extrapo-

late to the total housing stock. Bottom-up approach can be further categorized 

into statistical random models, time of use based models, and probabilistic 

empirical models. Because the second and third approaches require rela-

tively detailed data such as individual end-uses of appliances (freezer, ov-

en, washing-machine, etc.), and therefore we focus on the first–statistical 

random models.  

Alfares and Nazeerudin (2002) classified statistical random models into 

the following nine categories:  

 multiple regression; exponential smoothing; iterative reweighted 

least-squares; adaptive load forecasting; stochastic times series; 

ARMAX models based on genetic algorithms; fuzzy logic; neural 

networks and; knowledge-based expert systems. 

Besides these methods, thus far many interesting statistical/computational 

models for energy demand estimation have been proposed, including mul-

ti-equation Bayesian regression model (Cottet and Smith 2003), Bayesian 

semiparametric regression (Smith 2000), ARMAX–GARCH model (Hick-

ey et al. 2012), time varying spline (Harvey and Koopman 1993), general-

ized additive model (Cho et al. 2013), decomposition approach (Wang et 
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al. 2012a), functional data analysis models (Goia et al. 2010; Vilar et al. 

2012), time series with multiple seasonal patterns (Gould et al. 2008; Tay-

lor 2010a, b), integrated nested Laplace approximation (Ruiz-Cárdenas et 

al. 2012), spatial autoregressive ARMA model (Ohtsuka and Kakamu 

2013), moving average model considering economic shock (Lin et al. 

2013), support vector regression (Hong 2009; Hong et al. 2013), multivari-

ate meta-learning (Matijaš et al. 2013), self organization map (Yadav and 

Srinivasan 2011), the elliptic orbit algorithmic model (Zong-Chang 2012), 

echo state networks (Deihimi and Showkati 2012), non-linear fractal ex-

trapolation (Wang et al. 2012b) among others.  

Electricity demand forecasting up to 1 weak is usually termed “short-

term” forecasting (STF). Kyriakides and Polycarpou (2007) discussed the 

importance of STF from the view point of operation of power systems, but 

now the STF is also important for regional electricity planning purpose. 

Taylor et al. (2006) compared six univariate methods for STF for lead 

times up to a day ahead. They found that exponential smoothing method 

with double seasonality performed best, and the neural network did not 

performed well. They discussed that the reason of the disappointing per-

formance of neural network may be due to over-fitting or overly complex 

architecture, which are two common pitfalls in neural network modeling. 

Soares and Medeiros (2008) also compared several models, and suggested 

that seasonal ARIMA model and generalized long memory model of 

Soares and Medeiros (2006) performed well. This study attempts to com-

pare more recent methods which are introduced below. 

Javed et al. (2012) built electricity demand forecasting models using 

smart meter data, but their focus is on the load forecasting of each individ-

ual household, and not regional ( i.e., intensity). 

3. Modeling electricity intensity 

3.1. Framework 

Fig.1 represents the flowchart of our regional- hourly- electricity de-

mand estimation. 
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Fig.1. Flowchart of the regional- hourly- electricity demand estimation 

Our regional- hourly- electricity demand estimation procedure consists 

of the following five steps. 

First, regional- hourly- intensity value based on existing statistical sur-

vey, say   h,d,m,y,i is prepared, where h (1, …, H) denotes hour; d (1, …, D), 

day; m (1, …, M), month; y (1, …, Y), year; and i (1, …, I), region. In Ja-

pan, we can use the above mentioned the Japan Institute of Energy’s 

(2008) intensity. 

Second,               smart meter data    h,m,y,i   ( j-th element is given 

by            
  

) is prepared in order to update the existing intensity values 

(suppose that smart meters are installed to J numbers of buildings). Smart 

meter data sometimes suffers from “missing” and “outliers”. Missing data 

can easily be considered within state space framework; hence now the 

problem is to detect outliers (and presume it as missing). Define Q1: lower 

quartile (25%), Q2: upper quartile (75%), and interquartile range (IQR): 

Q3–Q1. Then the conventional outlier detection criterion is given as: 
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Here it must be noted that electricity demand typically have trend, mainly 

due to the temperature change. For example, if many households start to 

use gas fan heater in a cold day in autumn, then the demand may change 

significantly compared to the day before. In such case, usual observations 

may be regarded as outliers if based on this criterion. Hence we should test 

whether observations are outliers or not, for relatively short period but 
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number 1.5 should be replaced by similar number such as 3 with sufficient 

consideration on ones data’s characteristics
1

. 

Third, the intensity is updated using smart meter data. We propose a 

simple Bayesian updating method. Assume that exising intensity    h,d,m,y,i} 

obeys normal distribution N(                   
 ). Then using the measurement 

data’s mean           and (unbiased) variance          
 , the posterior distribu-

tion is given as N(                 
 ), where 
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Here, d, m, y, and i is omitted for simplicity. The inverse of variance is 

sometimes called “precision”. In this Bayesian framework, the updated in-

tensity is given as the average of “existing intensity” and the “average val-

ue of smart meter data” weighted by its precisions. When the number of 

measured data J is relatively large, then the weight assigned to “average 

value of smart meter data” becomes large, and vice ver. From the different 

point of view, the intensity estimated only from smart meter data is unsta-

ble when J is a small value, but we can stabilize it by utilizing the infor-

mation of existing intensity data. Unfortunately, the prior mean and vari-

ance of existing intensity is usually not available. Hence we assume that 

mean value is identical to the observed value, and its standard deviation is 

26.2% of the mean value (we set this value based on the electric bill from 

“Family Income and Expenditure Survey” of 2010). Now we have the up-

dated intensity, xh,d,m,y,i. 
Then fourth, statistical models are applied to xh,d,m,y,i for obtaining the 

forecasted value of the Intensity. In this paper, we compare the forecasting 

performance of the following six models in concluding recently proposed 

ones:  

“bats”, “tbats”, “lm”, “am”, “arima”, and “multivariate”.  

“bats” is proposed by De livera et al. (2011), by extending the Taylor 

(2003)’s Holt-Winters with two seasonal components given as (d, m, y, 

and i is omitted for simplicity): 

                                                      
1 More complicated methods are also available through e.g., “outliers” and 

“extremevalues” package in R. 
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where lh represents the level component; bh, trend components; sh
(1)

, first 

seasonal component and sh
(2)

 second seasonal component; m1 and m2, the 

periods of the seasonal cycles(m1 = 24 and m2 = 168), respectively;  , 

white-noise error.           are parameters. De livera et al. (2011) ex-

tended the work of Tayloar et al. (2003), and proposed a model which they 

call “bats”. “bats” considers nonlinearity in xh using box-cox transform, 

and also considers more than two number of seasonal terms. Moreover, er-

ror term is not restricted to white noise, but it can be ARMA(p, q), where p 

is the order of the autoregressive part, q is the order of the moving-average 

process. “bats” is expressed as: 
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where h  is white-noise error;                 are parameters. b is a 

parameter which represents long-run trend. The introduction of this term 

ensures that predictions of future values of the short-run trend bh converge 

to the long-run trend b instead of zero (De livera et al. 2011). 

“tbats” replace   
   

by Fourier term as: 
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where )(
1

k and )(
2

k are parameters, and )(k
j =2       (m1 = 24 and m2 = 

168 in our case study). “tbats” can expresses more flexible seasonal pat-

tern. De livera et al. (2011) empirically suggested that “tbats” surpasses 

“bats” in terms of forecasting performance. 

“arima” is the conventional seasonal ARIMA(p,  , q) (P, , Q)[m] model 

with covariates [temperature, squared temperature, and six calendar dum-

my variables], where   is the seasonal frequency (m = 24 in our case 

study). Soares and Medeiros (2008) compared several load forecasting 

models, and suggested the high accuracy of seasonal ARIMA model. 

“multivariate” is the multivariate dynamic linear model (Holmes et al. 

2012; Dordonnat et al. 2008; 2012) defined as: 
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where yd = (y1d, …, yHd   is the vector of observations, vd is the error vector 

whose covariance matrix is given by R, xd is the 26 1 vector of states (in-

cluding trend for each hour, time-variant coefficient for temperature and 

squared temperature), dZ is the 24   26 matrix whose first column is given 

by the temperature of day d, the second column is given by the squared 

temperature of the day, and the others are given by the 24   24 identity 

matrix. wd is the error vector whose covariance matrix is given by Q. We 

assume that R is the diagonal matrix, and Q is the matrix whose diagonal 

element is given by q1, and off diagonals q2 (This assumption was set 

based on several trial and error experiments). dd is the covariates matrix 

whose coefficients expressed by the matrix D are time-invariant. We as-

sume that effects of calendar dummy variables are time-invariant.  

Besides these sophisticated methods, we introduce two simple methods. 

“lm” is the basic multiple regression model with covariates [temperature, 

squared temperature, and calendar dummy variables], which is constructed 

for each hour (h = 0, …, 23). Thus we obtain 24 adjusted R
2
 values. “am” 

is the additive model. Different from “lm”, nonlinearity of the effects of 

temperature variables on electricity demands can be considered in this ap-

proach (see Ruppert et al. 2003 for more details). 

Finally, future regional electricity demand in each sector can be estimat-

ed by multiplying the forecasted intensity by floor area in each zone. As 
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indicated in Fig.2, urban models (e.g. Wegener 2004; Hunt et al. 2005; 

Iacono et al. 2008; Ueda et al. 2013) are useful for projecting future value 

of floor area. Yamagata and Seya (2013) noted that in urban modelling, 

considering the interaction of landuse (compact city with energy efficient 

buildings and PVs), transportation (EV and public transportation system), 

and energy systems (smart grid) is very important. Fig.2 represents the 

possible interaction between landuse, transportation and energy. Urban 

form will affect not only origin destination (OD) trip (transportation) dis-

tribution patterns but also energy demand and urban climate. Urban heat 

island effects may also affect electricity demand especially for cooling in 

summer season, but can be mitigated by strategic changes in land use such 

as re-vegetation in suburban areas (Kusaka et al. 2012). 

 

 

Fig.2. Concept of an integrated land use-transportation energy model:  Possible in-

teraction between land use-transportation and energy 

Thus far many efforts have been devoted to development of urban mod-

els that consider the interaction between land use and transportation. How-

ever, there are few studies which attempt to model land use, transportation, 

and energy/electricity simultaneously (Chingcuanco and Miller 2012; 

Yamagata and Seya 2013). Hence developing regional electricity demand 

model itself may contribute to mainstream of urban modeling. 
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3.2. Empirical application 

3.2.1. Data 

We have installed smart meters to four residential (detached houses), one 

hotel, and two buildings for town office, in Hokkaido, Japan, and have 

measured electricity since 2011. For the empirical illustration, we use three 

of four data for residential (data for the other one residential is excluded 

because it shows quite different consumption pattern due to the use of 

PVs). We use the 61 days (1464 hour) observations over two months from 

November 1 to December 31, 2012, and the data from January 1 to 15, 

2013 (360 hour) is used for assessing forecasting accuracy. The data used 

here does not include any missing, and outliers (based on the above men-

tioned weekly IQR criterion).  

3.2.2. Bayesian intensity updating 

Fig.3 shows the daily average of each household’s measured (unit) intensi-

ty (per m
2
; Green, blue, and red line). Also, black dashed line shows the 

averaged value for these three households. The intensity is rather different 

among the households. It is interesting to note that the movement of the 

green line and blue line is very similar. These movements may reflect tem-

perature effects. The black solid line shows the existing intensity. Needless 

to say, daily variation in that cannot be considered in the same month.  

The dotted line represents the result of Bayesian updating. Average of 

precision value in November is 1.49 for existing intensity, and 1.64 for 

samples. That for December is 1.31 for existing intensity, and 2.16 for 

samples. Hence relatively high weight is assigned to the smart meter data, 

especially for the period of the last two weeks in December, when the red 

line raised drastically, and the variance of samples became small. 
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Fig. 3. Existing intensity and updated intensity (daily average) 

Fig.4 represents the averaged intensity value for each day of week. As 

expected, the value is high in weekend, and therefore it is important to 

consider such calendar effects. 
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Fig.4. Existing intensity and updated intensity (averaged for each day of week) 

3.2.3. Forecasting result 

Fig. 5 represents the adjusted R
2
 in “lm”. Although we introduced rather 

simple variables (temperature, squared temperature and calendar dummy 

variables), the fit to the observation is reasonably well. This figure sug-

gests that the explanatory power by temperature varies hour to hour.  

Fig. 6 shows the effects of temperature on electricity demand in “am” 

(We considered the nonlinearity only for temperature variable based on the 

likelihood ratio test of linearity). It is interesting to note that in the case of 

seven to eight o’ clock, the slope is steep, but it is not true for midnight. At 

zero to one o’ clock, nonlinearity of effect is implied. 
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Fig.5. Adjusted R
2
 in “lm” 

 

 

      

Fig.6. Nonlinear effects of temperature on electricity demand 
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Fig.7 shows the results of plotting the forecasted intensity against the 

actual measurement, to which Bayesian update is performed. We can find 

that “bats” and “arima” show similar movements, and they overestimated 

the high values. On the other hand, the others seem under estimated the 

low values. Such results bring us the interest of model averaging to reduce 

the model biases, although it beyond the scope of the present paper.  

The parameter estimates for “bats”, “tbats”, and “arima” is shown in ta-

ble 1. As for seasonal ARIMA model, ARIMA(2,1,1)(2,0,2)[24] is suggest-

ed based on AIC. 

As the error measure of forecasting, we used the mean absolute percent-

age error (MAPE), which is traditionally used to measure forecasting accu-

racy (Taylor et al., 2006), defined as: 
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Fig.8 shows the result of calculating MAPE. The MAPE values are high 

compared to existing load forecasting studies (e.g., Taylor et al., 2006; 

Dordonnat et al., 2008). This is because observed temporal pattern is not 

stable due to the small sample size (only three measurements). Among the 

six models, “arima”, “multivariate”, and “tbats” performed relatively well. 

The high performance of seasonal ARIMA model coincident to the result 

of Soares and Medeiros (2008). It is interesting to note that the perfor-

mance of “bats” is quite inferior to that of “tbats”. 

Although “arima” and “multivariate” performed well, predicting “tem-

perature” very accurately is another difficult task, and its prediction error 

may affect the result of electricity demand forecasting (e.g., Deihimi and 

Showkati, 2012). Hence “tbats”, which attained reasonable forecasting ac-

curacy without covariates, seems a sounds option for regional forecasting. 
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Fig.7. Forecasted intensity and actual measurement 
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Table 1. Parameter estimates 

 

Method bats tbats arima 

omega 0.00267  0   

b 0.999      

alpha 0.0211  0.0259    

beta 0.000161      

gamma1 
0.00000780  0.0000212    

0.000240  –0.000000533    

gamma2 
  –0.0000133    

  0.0000227    

AR coefficients 1 0.166  –0.121  0.291  

AR coefficients 2 –0.254  0.604  0.0793  

AR coefficients 3 0.225  0.478    

AR coefficients 4   –0.227    

AR coefficients 5   –0.0935    

MA coefficients 1 0.170  0.423  –0.985  

MA coefficients 2 0.420  –0.365    

MA coefficients 3   –0.479    

SAR coefficients 1     0.677  

SAR coefficients 2     0.328  

SMA coefficients 1     –0.508  

SMA coefficients 2     –0.336 

dummy_SUN     0.0364 

dummy_MON     –0.00260  

dummy_TUE     –0.0104 

dummy_WED     –0.0270  

dummy_THU     –0.0835 

dummy_FRI     –0.0443 

Sigma
2
 0.0769  0.0819  0.117  

AIC 7226.6  7120.4  1048.3  
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MAPE 

 

Fig.8. Results of calculating MAPE 

4. Conclusions 

The present paper proposed a simple Bayesian updating method of the 

electricity intensity by assimilating the information of smart meter data. 

The applicability of the method was tested with Japanese case study. Also, 

forecasting of the intensity was performed using several recently proposed 

statistical methods, and its performance was compared. The results support 

the use of seasonal-ARIMA model, multivariate dynamic linear model, 

and tbats model of De Livera et al. (2011). 

In the future study, we are planning to install much large number of 

smart meters to various types of dwellings. Using the data, we are going to 

consider the differences in intensity by housing or household types. 
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